An Entropy Approach to Evaluation Relaxation for Bayesian Optimization Algorithm

نویسندگان

  • Hai Thi Thanh Nguyen
  • Hoang Ngoc Luong
  • Chang Wook Ahn
  • H. T. T. NGUYEN
  • H. N. LUONG
  • C. W. AHN
چکیده

Bayesian Optimization Algorithm (BOA), a multivariate estimation of distribution algorithm, needs incorporating with efficiency enhancement techniques to be capable of solving difficult large-scale problems in a reliable and scalable manner. In this paper, we present a novel evaluation relaxation method which is based on the conditional entropy measurement. The concept of conditional entropy is rigorously analyzed and then is used to investigate the stability of the population. Especially, we utilize the evaluation relaxation strategy (ERS) proposed herein to determine whether a candidate solution should be evaluated by actual functions or be estimated by surrogate models. BOA coupled with our entropy-based ERS, termed en-BOA, shows its superiority in significantly reducing the total number of expensive fitness evaluations until reliable convergence. Experimental results prove that the entropy-based ERS enhances the efficiency of BOA while not negatively affecting the scalability of the original algorithm. In addition, the effects of our efficiency enhancement technique on population sizing requirements are also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

A Framework for Optimal Attribute Evaluation and Selection in Hesitant Fuzzy Environment Based on Enhanced Ordered Weighted Entropy Approach for Medical Dataset

Background: In this paper, a generic hesitant fuzzy set (HFS) model for clustering various ECG beats according to weights of attributes is proposed. A comprehensive review of the electrocardiogram signal classification and segmentation methodologies indicates that algorithms which are able to effectively handle the nonstationary and uncertainty of the signals should be used for ECG analysis. Ex...

متن کامل

Lookahead Bayesian Optimization with Inequality Constraints

We consider the task of optimizing an objective function subject to inequality constraints when both the objective and the constraints are expensive to evaluate. Bayesian optimization (BO) is a popular way to tackle optimization problems with expensive objective function evaluations, but has mostly been applied to unconstrained problems. Several BO approaches have been proposed to address expen...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Parallel Predictive Entropy Search for Batch Global Optimization of Expensive Objective Functions

We develop parallel predictive entropy search (PPES), a novel algorithm for Bayesian optimization of expensive black-box objective functions. At each iteration, PPES aims to select a batch of points which will maximize the information gain about the global maximizer of the objective. Well known strategies exist for suggesting a single evaluation point based on previous observations, while far f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012